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How should experiments be designed to learn about

interference in networks?
Example: Ghana 2008 Voter Registration Fraud Experiment (Ichino)

@ 868 Electoral Registration
Stations (vertices)
connected by roads (edges)

@ Density of 2.2%

o Graph Transitivity of
70.3%













Background

Notation for Causal Questions

o Treatment assigned to i: Z; € {0,1}
e Vector of all treatment assignments: Z = {Zy,...,Z,}

@ Sharp Null of No Treatment Effect: all potential outcomes are equal

Yi(Z)=Y(Z)=Yi(Z=1,2.;)=Yi(Z=0,2Z_;) VZ#Z

e Graph-conditioned exposure: Y;:(D;), D;; records exposure condition
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Example of treatment propagation: The Ising Model

Initial treatment status drawn from Z; ~ Bernoulli(«). “Infection” / “Exposure”
probability at each iteration is

1
1+ exp(£(ki —2m;))

pr(Ei =1)

@ k is number of (directly adjacent) neighbors (0 < k; > K)
@ m is number of already infected neighbors (0 < m; > M)
@ F is “temperature” or “propensity to be infected”

This example: Only two time periods (t € {0,1}). The Ising model controls
actual infection after an experimenter assigns Z; at t = 0. Record infection after
the first period.
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Example of exposure types on the Ghana nodes

One draw from the Ising propagations with pr(Z; = 1) ~ Bernoulli(.15) for
t € {0,1} and Temperature= 10.

d =Di(Z =1,0< mi > M)
d(070) = D,‘(Zi = 0, mjy = 0)
d(071) = D,'(Z,' =0,mj > 1)
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Estimating Causal Effects
ATE: Aronow and Samii Estimator

Definitions:
@ D; indexes the exposure condition of observation /
o 7;(dk) is the probability i ends up in condition di
@ We consider

o d(,1), untreated with at least one treated neighbor
e d(,0), untreated with no treated neighbor

Estimand:
_ 1 i (D Y(dk)
Ut mi(d)
#(d(0,1), d(0,0)) = fi(d(0,1)) — A d(0,0))
Testing:

Following Horvitz and Thompson (1952) and CLT:
Var(#(d(o,1): dio,0))) < 1/N? (Var(fi(d(o,1))) + Var(ii(d(o,0))))
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Simulations to assess power and guide design
Baseline (pre-treatment) response
Y(0,0) ~ U(0,1)

Treatment allowed to propagate for one period and true (constant,
multiplicative) model of causal effects computed:

Y(1,0) = Y(0,1) = AY(0,0)

Consider parameters

o Treatment assignment probability « € {0.05,0.10,...,0.50}
o ‘Temperature’ T € {0,10,...,100}
o X {0.26,0.63}

Simulate 1,000 propagations at each combination of T and a.

For each realized propagation, assess power to reject Hy : 7 =0 at
significance level .05.

ext Steps
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Power With Additive Effects Model
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Tests of a Sharp Null: Distributional Differences

Bowers, Jake, Mark M. Fredrickson and Costas Panagopoulos. 2013.
“Reasoning about Interference Between Units: A General Framework.” Political
Analysis 21(1):97-124.

Details: Anderson-Darling k-sample test statistic (Scholz and Stephens, 1987);
randomization distributions via Rltools (Fredrickson, Bowers, Hansen 2014).
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Power as a Function of N Indirectly Treated
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Power With Additive Effects Model
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Power With Certain Propagation
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Summary
Under propagation, power optimizing proportion assigned to treatment may
be much less than 0.5.

Higher order parameters of treatment assignment distribution can
dramatically affect statistical power

Trade-off between power to detect network-moderated and
non-network-moderated effects (see also Bowers, Fredrickson,
Panagopoulos 2013).

Test statistics matter: even if interest focuses on ATE, the ATE may
provide little power when the true model is not a simple distributional shift.

Limitation on power driven by the need for strong (i.e., isolated) controls.
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Next Steps

More measures of design adequacy: RMSE, Type | error, Power.

Make pr(Z; = 1) depend on topology if not also covariates.

o degree-correlated assignment
e community-wise assignment schemes

Consider higher-order spreading
Re-parameterize Ising for substantive interpretation.

Provide more general simulation system that accommodates different:
e models of propagation
o models of effects
o statistical/causal inferential focus
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